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Abstract

A new method for nonparametric function estimation is proposed, which allows
for a more flexible estimation of the function in regions of the domain where it
has more curvature. The Locally Adaptive COmponent Selection and Shrinkage
Operator (LACOSSO) is a method for spatially adaptive nonparametric regression.
This method is derived using a theoretical framework provided by reproducing
kernel Hilbert spaces. In this framework, knowledge of the reproducing kernel of
the functional space in question is essential. The reproducing kernel is derived with
an intuitive approach. A theorem that establishes the optimal MSE convergence
rate of the method and the conditions needed to achieve this convergence rate is
also presented. In depth simulation studies demonstrate LACOSSO’s performance
is typically better, and at worst comparable, to the performance shown by its
competitors.

1 Introduction

Nonparametric Regression has proven to be a very useful methodology, with applications

to a large list of modern problems such as computer models, image data, environmental

processes, to name a few. The nonparametric regression model is given by

yi = f0(xi) + ǫi, i = 1, 2, ..., n (1)

where f0 is an unknown regression function and ǫi are independent error terms.

Smoothing splines are among the most popular methods for estimation of f0 due to
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their good empirical performance and sound theoretical support (Cox 1983, Speckman

1985, Eubank 1999, van de Geer 2000). It is usually assumed without loss of generality

that the domain of f0 is [0,1]. Let f (m) denote the mth derivative of f . The smoothing

spline estimate f̂ is the unique minimizer of

n
∑

i=1

(yi − f(xi))
2 + λ

∫ 1

0

(

f (m)(x)
)2

dx (2)

over all functions, f , in mth order Sobolev space,

Sm = {f : f (j) is absolutely continuous for j = 1, ..., m− 1 and f (m) ∈ L2}

The minimizer of (2) trades off fidelity to the data (in terms of residual sum of squares)

against smoothness of the reconstructed curve (in terms of the integrated squared deriva-

tive of order m, where m is typically taken to be two). The smoothing spline solution

uses a global smoothing parameter λ which implies that the true underlying mean process

has a constant degree of smoothness. In this paper a more general, ”spatially adaptive”,

framework is investigated, that accommodates varying degrees of smoothness by seeking

solutions where the smoothness penalty depends on the region of the domain where the

function estimation is occurring. The estimator is obtained within a Reproducing Kernel

Hilbert Space framework (Wahba 1990, Gu 2002).

There are many approaches to surface fitting using spatially adaptive knot placement

(basis function selection) with regression splines; see Friedman & Silverman (1989), Stone,

Hansen, Kooperberg & Truong (1997), Luo & Wahba (1997), and Hansen & Kooperberg

(2002). However, the properties of these estimators are difficult to study analytically

since they are the result of an algorithm and not an explicit solution to an optimization

problem. Pintore, Speckman & Holmes (2006) use a piecewise constant function for λ

in (2). However, this form of λ(x) requires specifying the number of knots, the knot

locations, and the values of λ(x) in between knot locations. This was accomplished
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by selecting one of several candidate knot location options and λ values between the

knots via GCV. Unfortunately this leads to a smoothing method with large number of

smoothing parameters whose values need to be selected. The Loco-Spline procedure

of Storlie, Bondell & Reich (2010) uses a spatially varying penalty based on an initial

estimate. The final estimate is penalized less where the initial estimate indicates more

curvature is needed. However, this procedure can be unstable for small sample sizes and

is computationally expensive for larger samples.

Here, a method is proposed which breaks down the interval [0, 1] into p disjoint sub-

intervals. Then p functional components in [0, 1] are defined, which have two important

features. First, the purpose of each of these p components is to estimate the true function

locally, i.e., in only one of the sub-intervals. Second, even though all components are

defined on the entire domain, i.e., [0, 1], a component has curvature only in one of the

afore mentioned intervals. The p local estimates are then added together to produce a

function estimate over the entire [0, 1] interval. This is similar in spirit to the method of

Pintore et al. (2006). However, in the proposed method, the additional flexibility that

comes from finding these p local functional estimates does not come at any additional

computational cost. In spite of having p components there is no need to specify (e.g.,

choose via cross validation) p smoothing parameters. Theory from COmponent Selection

and Shrinkage Operator (COSSO) (Lin & Zhang 2006), reduces the problem of specifying

these p smoothing parameters to specifying only one smoothing parameter without a

loss in flexibility. In fact, empirical studies indicate superior performance of COSSO

in the additive model framework over that for the traditional additive model (Hastie

& Tibshirani 1990), see Storlie, Bondell, Reich & Zhang (2011), for example. For the

same reason (i.e., one tuning parameter as opposed to many), the empirical studies in

this paper indicate superior performance of the proposed method to that suggested in

Pintore et al. (2006).

Section 2 provides a review the COSSO framework that will be used to solve for
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the proposed estimator. In Section 3, the Locally Adaptive COmponent Selection and

Shrinkage Operator (LACOSSO), a new method for spatially adaptive nonparametric

regression, is presented. Section 4 is devoted to computational details, e.g., finding the

reproducing kernel of the functional spaces needed to solve the proposed optimization

problem. In Section 5 a theorem that establishes the optimal MSE convergence rate of

LACOSSO is presented. The proof of this result can be found in the Supplementary

Material. Section 6 presents results from a simulation study and an example dataset

to compare LACOSSO to other existing methods. In all the examples presented, LA-

COSSO’s performance is better, or comparable, to the performance shown by its com-

petitors. Section 7 concludes the chapter with some closing remarks and mentions areas

worthy of future exploration.

2 Smoothing Spline ANOVA and COSSO

In this section only the necessary concepts of Smoothing Spline (SS)-ANOVA needed for

the development of LACOSSO are reviewed. For a more detailed overview of Smooth-

ing Splines and SS-ANOVA see Wahba (1990), Wahba, Wang, Gu, Klein & Klein (1995),

Schimek (2000), Gu (2002), and Berlinet & Thomas-Agnan (2004). For a gentle introduc-

tion to RKHS and penalized regression, see Nosedal-Sanchez, Storlie, Lee & Christensen

(2011).

In the smoothing spline literature it is typically assumed that f ∈ F where F is a

reproducing kernel Hilbert space (RKHS). Denote the reproducing kernel (r.k.), inner

product, and norm of F as KF , 〈·, ·〉F , and || · ||F respectively. Often F is chosen to

contain only functions with a certain degree of smoothness. For example, functions on one

variable are often assumed to belong to the second order Sobolev space, S2 = {f : f, f ′

are absolutely continuous and f ′′ ∈ L2[0, 1]}.
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A RKHS F can always be written as

F = {1} ⊕ {

p
⊕

j=1

Fj}, (3)

where ⊕ represents the direct sum operation, F1, ..., Fp is some orthogonal decomposi-

tion of the space, and each of the Fj is itself a RKHS. A familiar example of such a

decomposition is the additive model f(x) = b0 +
∑p

j=i fj(xj) when there is more than

one predictor.

A traditional smoothing spline type method finds f̂ ∈ F to minimize

1

n

n
∑

i=1

(yi − f(xi))
2 + λ

p
∑

j=1

θ−1
j ||P jf ||2 (4)

where P jf is the orthogonal projection of f onto Fj and θ ≥ 0. If θj = 0, then the

minimizer is taken to satisfy ||P jf ||2 = 0. We use the convention 0/0 = 0 throughout

this paper. The smoothing parameter λ is confounded with the θ′s, but is usually included

in the setup for computational purposes.

The COSSO (Lin & Zhang 2006) penalizes on the sum of the norms instead of the

squared norms as in the traditional smoothing spline and hence achieves sparse solutions

(e.g., some of the functional components are estimated to be exactly zero). Specifically,

the COSSO estimate, f̂ , is given by the function f̂ ∈ F that minimizes

1

n

n
∑

i=1

(yi − f(xi))
2 + λ

p
∑

j=1

||P jf ||F (5)

where λ is a smoothing parameter.

The Adaptive COSSO (ACOSSO) improves upon COSSO by using individually weighted

norms to smooth each of the components. Specifically, ACOSSO selects as the estimate
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the function f ∈ F that minimizes

1

n

n
∑

i=1

(yi − f(xi))
2 + λ

p
∑

j=1

wj‖P
jf‖F (6)

where 0 < wj < ∞ are weights that can depend on an initial estimate of f which we

denote f̃ . The wjs are not tuning parameters in the sense that they would need to be

chosen by cross validation. For more details about ACOSSO see Storlie et al. (2011).

Finally, it is possible to give an equivalent form of (6) that is useful for computational

purposes. Consider the problem of finding [θ1, ..., θp] ∈ ℜp and f ∈ F to minimize

min
f∈F

1

n

n
∑

i=1

(yi − f(xi))
2 + λ0

p
∑

j=1

w2
j

θj
‖P jf‖2F + λ1

p
∑

j=1

θj (7)

subject to θj ≥ 0, j = 1, ..., p, λ0 is a constant that can be fixed at any positive value,

and λ1 is a smoothing parameter. For a given λ in (6), there is a value of λ1 in (7) that

will result in the same minimizing function f̂ . See Storlie et al. (2011) for a proof of this

equivalence. Knowledge of which value of λ1 corresponds to which value of λ is typically

not needed, since the smoothing parameter is usually not pre-specified, rather it is chosen

based on some goodness of fit measure anyhow. The minimization in (7) has the same

flexibility as a minimization with p smoothing parameters θ1, . . . , θp. However, the θj

are treated as if they are additional model parameters, then they are also penalized (in

the last term). This is similar to modeling the θj with a hyper-prior in a hierarchical

Bayesian framework.

3 A locally Adaptive Estimator

The penalty term on the right of (2) is an overall measure of the roughness of the function

over the domain. The tuning parameter λ controls the trade-off in the resulting estimate
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between smoothness and fidelity to the data; large values of λ will result in smoother

functions while smaller values of λ result in rougher functions but with better agreement

to the data. In many cases the underlying function changes more abruptly in some

regions than in others. In situations like this the global penalty will cause the smoothing

spline estimator to either over-smooth in some regions and/or under-smooth in others

(Storlie et al. 2010).

Consider spatially adaptive estimators which are defined by the explicit function

minimization problem,

1

n

n
∑

i=1

(yi − f(xi))
2 + λ

p
∑

j=1

wj

{

∫ τj

τj−1

[f ′′(x)]2dx

}1/2

(8)

over all functions, f ∈ S2, for given knots 0 = τ0 < τ1 < · · · < τp = 1. The knots need

to be pre-specified (they could be chosen to be equally spaced on the quantiles of x, for

example).

An equivalent minimization to (8) which is more convenient for computational pur-

poses is

1

n

n
∑

i=1

(

yi − b0 − b1xi −

p
∑

j=1

fj(xi)

)2

+ λ

p
∑

j=1

wj

{

∫ τj

τj−1

[f ′′

j (x)]
2dx

}1/2

(9)

over b0, b1 ∈ ℜ, and all functions f1 ∈ S∗

1 , . . . , fp ∈ S∗

p , where

S∗

j = {f : f and f ′ absolutely continuous, f ′′ ∈ L2 , with f(x) = 0 if x ∈ [0, τj−1),

f is linear for x ∈ (τj , 1]} j = 1, . . . , p.

The proposed estimator in (8) has several important properties. First, this formula-

tion allows for the functional estimate to vary adaptively with x allowing for more/less

penalty in regions of the domain where it is beneficial. This is accomplished by breaking
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the function down into the p functional components. Second, the estimator is not penal-

izing the squared norm, rather the norm of each of these p variables, as in the COSSO

framework. In doing so the estimator also inherits the computational advantages from

COSSO as discussed further in Section 4. Third, there are p new elements in the mini-

mization problem, w1, w2, ..., wp. However, these are not smoothing parameters (i.e., they

will not be estimated), rather they are weights that can depend on an initial estimate

of f which we denote f̃ . For example, f could initially be estimate via the traditional

smoothing spline (a particular way of finding these quantities will be discussed in the

next subsection). Finally, there is only one smoothing parameter to choose via cross

validation or similar means which keeps computation more feasible, and results in better

performance in practice.

3.1 Specifying wj.

Given an initial estimate f̃ , we wish to construct wj’s so that the prominent functional

components enjoy the benefit of a smaller penalty relative to less important functional

components. In contrast to the adaptive LASSO procedure for linear models (Zou 2006),

there is no single coefficient, or set of coefficients, to measure importance of a variable.

One possible scheme would be to make use of an estimate of the RKHS norm used in the

COSSO-like penalty and set

wj = ‖f̃j‖
−γ
F . (10)

We suggest the following procedure to specify the wjs:

1. Set wj = 1 for j = 1, 2, ..., p in (8). By doing this, the same importance is placed

on each of the functional components. With this choice of wj’s (8) becomes

1

n

n
∑

i=1

(yi − f(xi))
2 + λ

p
∑

j=1

‖P jf‖F . (11)
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The solution to the above minimization problem gives us f̃ .

2. Set wj = ‖P jf̃‖−γ
F , for some parameter γ. We have found that setting γ = 1 or

γ = 2 provides good results in practice.

4 Computation

4.1 Solving LACOSSO with the RKHS framework

If each of the S∗

j is endowed with the inner product

〈f, g〉 =

∫ 1

0

f ′′(x)g′′(x)dx

then each of the S∗

j are orthogonal in the space F =
⊕

j S
∗

j . It then becomes clear that

(9) is a special case of (6). Thus, using the equivalence of (6) and (7), the minimization

in (9) can be written as the minimizer of

1

n

n
∑

i=1

(

yi − b0 − b1xi −

p
∑

j=1

fj(xi)

)2

+ λ0

p
∑

j=1

w2
j

θj

{

∫ τj

τj−1

[f ′′

j (x)]
2dx

}

+ λ1

p
∑

j=1

θj (12)

over b0, b1 ∈ ℜ, and all functions f1 ∈ S∗

1 , . . . , fp ∈ S∗

p .

The algorithm used to solve (7) is detailed in Storlie et al. (2011) and can be used

here to solve (12) as well. It hinges on the representation theorem of Wahba (1990) to

write the solution to (12) in the form

f̂(x) = b̂0 + b̂1 +

n
∑

i=1

ĉi

p
∑

j=1

Rj(xi, x) (13)

The main ingredient needed in the ACOSSO algorithm is thus the reproducing kernel Rj

for each orthogonal subspace S∗

j . These reproducing kernels are presented in the next

subsection. But first, a simple form for the wj in (10) is presented based on the initial
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estimate f̃ . Write the initial estimate in the form f̃ = b̃0 + b̃1 +
∑n

i=1 c̃iRj(xi, x) as given

in (13). We know that f̃j is given by the orthogonal projection of f̃ onto Hj, which is

P j f̃ =
∑n

i=1 c̃iRj(xi, ·). Hence,

‖P j f̃‖2F = 〈

n
∑

i=1

c̃iRj(xi, ·),

n
∑

i=1

c̃iRj(xi, ·)〉 = c̃
′Σc̃, (14)

or

wj = (c̃′Σc̃)
−γ/2

(15)

4.2 Finding the Reproducing Kernels

Finding the reproducing kernel (r.k.) directly for the S∗

j would be difficult. Hence, we

instead make use of the connection between a RKHS H with reproducing kernel R(s, t)

and a Gaussian Process (GP) with covariance K(s, t) = R(s, t). The connection is

based on the following result, let {X(t), t ∈ T} be a real Gaussian Stochastic Process

defined on a probability space, with mean function E[X(t)] = 0 and covariance K(s, t) =

E[X(t)X(s)]. It is well known, see Parzen (1961), that K determines a Hilbert space

H(K), called the RKHS of K, which has the following properties: K(·, t) ∈ H(K) and

〈f,K(·, t)〉 = f(t) for every t ∈ T . We say that such an {f(t), t ∈ T} is a representation

of the process {X(t), t ∈ T}. Before finding the r.k. for the space of functions S∗

j , we

first present an example that will provide some intuition into the search process.

Example (Integrated Brownian Motion). Denote by H the collection of functions f with

f ′′ ∈ L2[0, 1] and consider the subspace W2 = {f(x) ∈ H : f, f ′ absolutely continuous

and f(0) = f ′(0) = 0}. Define the inner product on H as

〈f, g〉 =

∫ 1

0

f ′′(t)g′′(t)dt (16)
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It can be shown (see Nosedal-Sanchez et al. (2011) for example), that

R(s, t) =
max(s, t)min2(s, t)

2
−

min3(s, t)

6
(17)

Now, also consider a stochastic process with K(s, t) = R(s, t). Let {X(t), t ∈ [0, 1]}

be the Wiener process. Define a new stochastic process {Z(t), t ∈ [0, 1]} by

Z(t) =

∫ t

0

X(s)ds (18)

The process {Z(t), t ∈ [0, 1]} the integrated Wiener process or integrated Brownian

process. It can be shown (Parzen 1962) that E[Z(t)] = 0 and

E[Z(s)Z(t)] =
max(s, t)min2(s, t)

2
−

min3(s, t)

6
. (19)

Thus W2 is a representation of {X(t), t ∈ [0, 1]}.

Using intuition gained from this example, the reproducing kernels for the S∗

j can be

derived. The steps needed to find the r.k. are the following:

(i). Use intuition to guess at the G.P. {X(t), t ∈ [0, 1]} that corresponds to the RKHS

H for which the form of the r.k. is desired R.

(ii). Find the covariance function K for X(t).

(iii). Demonstrate that R = K is such that R(·, t) ∈ H and 〈R(·, t), f〉 = f(t) for f ∈ H ,

so that R is the unique r.k. for H .

For ease of presentation, first consider the simplest case: two subintervals. Let τ1 ∈

[0, 1], given τ1 break down the [0, 1] interval into two subintervals. The basic idea is to

express the function f(x) as

f(x) = α + βx+ f1(x) + f2(x) (20)
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where f1 ∈ S∗

1 and f2 ∈ S∗

2 . Equation (20) expresses f(x) as a function in the space

F = {1} ⊕ {x} ⊕ S∗

1 ⊕ S∗

2 . To apply the RKHS framework and computational solution

of ACOSSO to this problem the RKHS’s H1 ⊂ S∗

1 and H2 ⊂ S∗

2 need to be defined and

the corresponding r.k.’s R1 and R2, respectively, need to be derived. It is not necessary

to define a RKHS for the constant or linear term since they lie in the null space of the

penalty in (9).

Define H1 = S∗

1 with inner product 〈f1, g1〉H1
=
∫ 1

0
f ′′

1 (t)g
′′

1(t)dt. Similarly H2 = S∗

2

with inner product 〈f2, g2〉H2
=
∫ 1

0
f ′′

2 (t)g
′′

2(t)dt. As previously mentioned, the locally

adaptive estimator in (9) now becomes a special case of ACOSSO in (6).

First, we find the r.k. for H1. By the definition of H1, f1 ∈ H1 implies f1 has

curvature only in [0, τ1], f1 ∈ S2 (where S2 represents 2nd order Sobolev Space) and

the inner product for H1 is the same as that in the previous example involving W2 and

integrated Brownian motion.

In an effort to find the GP representation of H1 construct a Gaussian process as

follows

Z1(t) =

{

∫ t

0
X(s)ds 0 ≤ t ≤ τ1

∫ t

0
X(s)ds+X(τ1)(t− τ1) τ1 ≤ t ≤ 1

where X(t) is a Wiener Process or Brownian motion.

The covariance function for Z1, K1, is a function whose domain is ℜ
⊗

ℜ. Given τ1,

a couple (s, t) can fall into one of four regions: (i) s ∈ [0, τ1] and t ∈ [0, τ1], (ii) s ∈ (τ1, 1]

and t ∈ (τ1, 1], (iii) s ∈ [0, τ1] and t ∈ (τ1, 1] and (iv) t ∈ [0, τ1] and s ∈ (τ1, 1].

Below, K1(s, t) is defined for each of these cases. However, knowing that K1(s, t) must

be a symmetric function cases (iii) and (iv) are the same so there are really only three

cases. The calculations for each case are carried out in Section A.1 of the Supplementary
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Material, but the results are given here for convenience. K1(s, t) is defined as follows

=











max(s,t)min2(s,t)
2

− min3(s,t)
6

for s, t ∈ [0, τ1]
τ3
1

3
+

(max(s,t)−τ1)τ21
2

+
(min(s,t)−τ1)τ21

2
+ 2[min(s,t)−τ1][max(s,t)−τ1]τ1

2
for s, t ∈ (τ1, 1]

max(s,t)min2(s,t)
2

− min3(s,t)
6

otherwise

(21)

In Section A.2 of the Supplementary Material, it is demonstrated that K1(s, t) =

R1(s, t) has the reproducing property, and hence, is the r.k. for H1. The r.k. K1(s, t)

also depends on τ1. For ease of notation, make this dependence explicit by writing

K∗(s, t, τ1) = K1(s, t).

Now, by the definition of S∗

2 , the functions in S∗

2 are functions equal to zero in [0, τ1]

and with curvature in (τ1, 1]. Parallel to that above, define the stochastic process Z2(t)

as follows

Z2(t) =

{

0 0 ≤ t ≤ τ1
∫ t

τ1
X(s− τ1)ds τ1 ≤ t ≤ 1

where X(t) is a Wiener Process or Brownian motion. From the above definition, it should

be clear that Z2(t) is a shifted version of Z1(t), taking on a value of exactly 0 in the region

where Z1 is nonlinear, and providing nonlinearity in the region where Z1 is linear.

The covariance function of Z2 is

K2(s, t) =

{

K∗( s−τ1
1−τ1

, t−τ1
1−τ1

, τ2−τ1
1−τ1

) for s, t ∈ (τ1, 1]

0 otherwise
(22)

Again, it is demonstrated in Section A.2 of the Supplementary Material that K2(s, t) =

R2(s, t) has the reproducing property, and hence, is the r.k. for H2.

One can do something analogous to derive the reproducing kernels in the case of

multiple knots 0 = τ0 < τ1 < · · · < τp−1 < τp = 1. In the general case that Hj = S∗

j with
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inner product 〈fj, gj〉Hj
=
∫ 1

0
f ′′

j (t)g
′′

j (t)dt, the r.k. for Hj is

Kj(s, t) =















K∗(
s−τj−1

1−τj−1
,
t−τj−1

1−τj−1
,
τj−τj−1

1−τj−1
) for s, t ∈ (τj−1, τj ]

K∗(
s−τj
1−τj

,
t−τj
1−τj

,
1−τj−1

1−τj−1
) for s, t ∈ (τj , 1]

0 otherwise

(23)

5 Asymptotic properties of LACOSSO.

Let the L2 norm of a function evaluated at the data points be denoted

‖f‖2n =
1

n

n
∑

i=1

f 2(xi)

The following theorem states that LACOSSO attains the optimal convergence rate for

nonparametric regression estimators. The proof is provided in Section A.3 of the Sup-

plementary Material.

Theorem. Consider the regression model yi = f0(xi) + ǫi, i = 1, 2, ..., n, where x′

is are

given values of a covariate in [0, 1], and ǫ′is are independent N(0, σ2) errors. Assume f0

lies in S2 with S2 being the second order Sobolev space.

Let f̂ be defined as in (8) with wj = 1 for all j and let I(f) =
∫ 1

0
[f ′′(x)]2dx. Then (i)

if f0 is a nonlinear function, and λ−1
n = Op(n

2/5)I3/10(f0), then

‖f̂−f0‖n = Op(λn)I
1/2(f0); (ii) if f0 is a linear function, then ‖f̂−f0‖n = Op(max(nλn)

−2/3, n−1/2).

Remark 1. if λn ∼ n−2/5 then ‖f̂ − f0‖n = Op(n
−2/5) which is optimal for nonparametric

regression estimators.

Remark 2. Here it is assumed that wj = 1, but this could be relaxed. All that is really

needed is for wj = Op(1) and w−1
j = Op(1) in order for the proof to go through.
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6 Example Results

In this section the performance of LACOSSO is evaluated on several simulated data sets.

The results are compared to those from several other competing methods. The methods

included in these simulations are:

LOCO − The Loco-Spline procedure with tuning parameter selection via 5-fold CV as

described in Storlie et al. (2010).

SAS(5) − the version of the spatially adaptive smoothing spline suggested in Pintore

et al. (2006) which uses piecewise constant (with 5 bins since this had the best perfor-

mance in their paper) for λ(x).

TRAD − the traditional smoothing spline (TRAD) with tuning parameter chosen via

GCV.

LOKERN − local kernel regression with plug-in local bandwidth as provided by the R

package lokern. This procedure uses a second order kernel with a plug-in estimate of the

asymptotically optimal local bandwidth.

MARS − Multivariate Adaptive Regression Splines (Friedman 1991) as provided by the

R package polymars. This procedure uses regression splines with spatially adaptive knot

placement.

LACOSSO(γ,p) − Locally Adaptive COSSO procedure with tuning parameter selec-

tion via GCV with weight power γ and p bins (τ ′js placed at evenly spaced quantiles of x).

In the simulations results are reported for all combinations of γ = 0, 1, and p = 5, 10, 20.

6.1 Mexican Hat Function

The first test problem which we call the Mexican hat function is a quadratic function

with a sharp Gaussian bump in the middle of the domain. Specifically the function is

given by

f(x) = −1 + 1.5x+ 0.02φ0.02(x− 0.5) (24)
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where φσ(x−µ) is the N(µ, σ2) density evaluated at x. A simple random sample of size n

is generated from from xi ∼ Unif (0, 1), i = 1, 2, ..., n. Then Yi = f(xi) + ǫi, is generated,

where ǫi ∼ N(0, 0.25).

Figure 1 displays the data along with the corresponding fits from LACOSSO and

traditional smoothing spline for a typical realization with n = 100. Here it can be seen

that LACOSSO-spline is able to both better capture the peak and stay smooth where the

function is flat. On the other hand, see how the traditional smoothing spline ”chases”

data points in areas where the true function is flat.
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Figure 1: Mexican hat function. Left: Data generated from the Mexican hat Function with
n=100 along with the true function. Middle: The LACOSSO (1,20) estimate (solid) with
true function (dashed). Right: The traditional smoothing spline estimate (solid) with the true
function (dashed)

.

Tier one of Table 1 compares the performance on the Mexican hat example for these

methods as sample size increases. The reported summary statistics are the average mean

squared error (AMSE) and the percent best. The AMSE is the average of the MSE over
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100 realizations at the respective sample sizes. Here we are using the definition of MSE

which averages squared errors at the data points, i.e., MSE = 1
n

∑n
i=1(f(xi) − f̂(xi))

2.

The percent best is the percentage of the 100 realizations that a given method had the

smallest MSE among the competing methods.

From Table 1 it is clear that LACOSSO has a very competitive performance for all

sample sizes on the Mexican hat example example. LACOSSO (1,20) had the smallest

MSE for approximately 40% of the realizations for each sample size.

6.2 Dampened Harmonic Motion

The next problem is a dampened harmonic motion also known as the spring equation.

Functions with this type of behavior are common to just about any structural engineering

problem. The spring equation is given by

f(x) = a exp{−b(1 − x)} cos{w(1− x)} (25)

The parameter values of a = 1, b = 30, w = 30π have been chosen to produce the data

for this simulation. Again, xi ∼ Unif (0, 1), i = 1, 2, ..., n with Yi = f(xi) + ǫi, but here

ǫ ∼ N(0, 0.05).

Figure 2 displays the data and the corresponding fits from LACOSSO and traditional

smoothing spline for a typical realization with n = 100. Here it can be seen that the

LACOSSO-spline better captures the behavior of this function. The traditional smooth-

ing estimate does not capture the higher amplitude oscillation as well as LACOSSO does

and, again, allows for the undesirable behavior of ”chasing” points in areas where the

true function is flat.

Tier two of Table 1 summarizes the performance on the dampened harmonic example

for sample sizes n = 100, 200, and 300. In this example, the proposed method has a

performance as good as the one shown by LOCO and SAS(5). However, LACOSSO
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Mexican Hat
n = 100 n = 200 n = 300

LOCO-SPLINE 158.40 (5.82) 52.69 (2.71) 37.32 (1.88)
SAS(5) 106.47 (5.40) 55.10 (3.09) 35.45 (1.59)
TRAD 205.27 (4.62) 116.96 (2.62) 81.77 (1.57)

LOKERN 342.03 (20.8) 157.31 (6.12) 108.64 (3.05)
MARS 655.64 (40.3) 645.70 (44.5) 493.14 (33.1)

LACOSSO (0,5) 173.38 (5.74) 89.93 (3.07) 61.78 (2.04)
LACOSSO (1,5) 103.56 (4.39) 48.66 (1.79) 31.55 (1.29)
LACOSSO (0,10) 145.07 (5.30) 77.20 (2.79) 52.98 (1.80)
LACOSSO (1,10) 88.59 (3.87) 44.81 (1.78) 30.62 (1.21)
LACOSSO (0,20) 134.87 (5.40) 74.61 (2.84) 46.60 (1.64)
LACOSSO (1,20) 85.08 (4.00) 43.67 (1.99) 27.91 (1.16)

Dampened Harmonic
n = 100 n = 200 n = 300

LOCO-SPLINE 3.75 (0.40) 2.99 (0.29) 2.33 (0.08)
SAS(5) 3.33 (0.17) 1.92 (0.07) 1.30 (0.04)
TRAD 9.40 (0.26) 5.86 (0.11) 4.09 (0.06)

LOKERN 31.50 (2.15) 22.98 (1.50) 19.68 (1.55)
MARS 44.13 (3.17) 52.02 (2.44) 68.37 (1.97)

LACOSSO (0,5) 5.12 (0.19) 2.91 (0.09) 1.89 (0.06)
LACOSSO (1,5) 3.59 (0.16) 2.06 (0.08) 1.32 (0.04)
LACOSSO (0,10) 3.77 (0.16) 2.11 (0.08) 1.37 (0.04)
LACOSSO (1,10) 3.17 (0.16) 1.82 (0.09) 1.23 (0.05)
LACOSSO (0,20) 3.67 (0.15) 2.03 (0.08) 1.31 (0.04)
LACOSSO (1,20) 3.31 (0.17) 2.04 (0.09) 1.37 (0.04)

Rapid Change
n = 100 n = 200 n = 300

LOCO-SPLINE 3.54 (0.22) 1.61 (0.09) 1.13 (0.05)
SAS(5) 4.15 (0.25) 2.05 (0.10) 1.36 (0.05)
TRAD 5.49 (0.16) 3.05 (0.07) 2.15 (0.04)

LOKERN 7.41 (0.32) 3.76 (0.12) 2.68 (0.07)
MARS 5.34 (0.34) 3.37 (0.20) 2.61 (0.10)

LACOSSO (0,5) 4.26 (0.11) 2.43 (0.07) 1.81 (0.06)
LACOSSO (1,5) 3.16 (0.12) 1.87 (0.08) 1.33 (0.05)
LACOSSO (0,10) 4.32 (0.12) 2.46 (0.07) 1.86 (0.05)
LACOSSO (1,10) 2.69 (0.13) 1.55 (0.09) 1.07 (0.04)
LACOSSO (0,20) 4.83 (0.12) 2.53 (0.07) 1.87 (0.05)
LACOSSO (1,20) 2.77 (0.14) 1.45 (0.09) 0.98 (0.04)

Table 1: Table 1: Results of 100 Realizations from Mexican hat, Dampened Harmonic, and
Rapid Change examples. The the mean square error averaged over the 100 realizations (AMSE)
with standard error in parentheses is presented for sample sizes of n = 100, 200, 300.
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Figure 2: Dampened harmonic function. Left: Data generated from the dampened harmonic
function with n=100 along with the true function. Middle: The LACOSSO (1,10) estimate
(solid) with true function (dashed). Right: The traditional smoothing spline estimate (solid)
with the true function (dashed)

.

(1,10) has smaller MSE in, roughly, 30% of the realizations for all sample sizes, almost

twice as much as SAS(5), its closest competitor.

6.3 Rapid Change Function

The rapid change function is defined as

f(x) =
0.8

1 + exp[−75(x− 0.8)]
(26)

Once again, xi ∼ Unif (0, 1) with Yi = f(xi) + ǫi and ǫi ∼ N(0, 0.05).

Figure 3 displays the data and the corresponding fits from the traditional smoothing

spline for a typical realization with n = 100. The smoothing spline estimate is very rough
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overall whereas the LACOSSO-spline is able to fit the true function just as well in the

rapid change region as in the other regions.
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Figure 3: Rapid change function. Left: Data generated from the rapid change function with
n=100 along with the true function. Middle: The LACOSSO (1,20) estimate (solid) with
true function (dashed). Right: The traditional smoothing spline estimate (solid) with the true
function (dashed)

.

Tier three of Table 1 summarizes the results of the simulations from this example. In

this example, LACOSSO (1, 10) and (1, 20) have a lower AMSE than the other methods

at all sample sizes. The only method that compares to these two is LOCO-Spline.

6.4 Waste Isolation Pilot Plant Example

Nonparametric regression techniques have become a popular tool for analyzing complex

computer model output (Storlie & Helton 2008, Reich, Storlie & Bondell 2009, Storlie,

Swiler, Helton & Sallaberry 2009). Here we consider a two-phase fluid flow simulation
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study (Vaughn, Bean, Helton, Lord, MacKinnon & Schreiber 2000) carried out by Sandia

National Laboratories as part of the 1996 compliance certification application for the

Waste Isolation Pilot Plant (WIPP) in New Mexico. The computer model simulates

the waste panel’s condition 10,000 years after the waste panel has been penetrated by a

drilling intrusion.

A small example from these results is considered in this presentation. In particular,

the modeling case corresponding to a drilling intrusion at 1,000 yr that penetrates both

the WIPP repository and an underlying region of pressurized brine is used as an exam-

ple (i.e., an E1 intrusion at 1,000 yr in the terminology of the 1996 WIPP CCA; see

Table 6, (Helton, Martell & Tierney 2000)). Specifically, we investigate the relationship

between waste pressure at 10,000 years (WAS PRES.10K) and Bore Hole Permeability

(BHPERM). This is a very interesting example, because at large values of BHPERM, so

much brine flows down the borehole that the repository saturates and rises to hydrostatic

pressure. This phenomenon can be seen in Figure 4 where there is an abrupt change in

WAS PRES.10K around BHPERM= 0.8.

Figure 4: Scatterplot ofWAS PRES.10K versus BH-
PERM along with the LACOSSO fit (dashed) and
the Traditional Smoothing Spline fit (solid).
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Figure 4 displays the fit of the tra-

ditional smoothing spline along with

the LACOSSO(1,10) estimate, both

using 5-fold CV for tuning parame-

ter selection. This example benefits

from the local approach to smooth-

ing as LACOSSO clearly results in a

much more appealing main effect es-

timate for BHPERM. The LACOSSO

estimate is a smooth function for BH-

PERM < 0.8, makes an abrupt change

at BHPERM ≈ 0.8, then smooth
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again. The traditional smoothing spline on the other hand has to select a small tuning

parameter to reduce the penalty in order to adequately capture the change at BHPERM

≈ 0.8. This results in “chasing” data points and an undesirable rough behavior of the

estimated function for BHPERM < 0.8

6.5 Computational Time

The CPU times required to fit each of the models are displayed in Figure 5 for each of

the methods ( lokern, trad, mars, sas(5), lacosso(1,5), lacosso(1,10), lacosso(1,20), loco-

spline), for the Mexican Hat function presented in Section 6.1. Computation times on

the other examples from Sections 6.2 and 6.3 were similar. All models were fit using

a commodity machine with Pentium quad core 2.66 GH processors (although parallel

computing was not used). The times presented in Figure 5 represent average computation

time over 10 different datasets.

To make direct computational time comparisons, all methods are fully implemented

in R. Substantial computational savings would be expected if they were fully or even

partially implemented in a compiled language such as C. This is particularly true for the

Loco-spline procedure as it requires a numerical integration to evaluate each element of

the Gram matrix.

7 Conclusions

A new nonparametric regression estimator, LACOSSO, is obtained via solving a regu-

larization problem with a novel adaptive penalty on the sum of functional norms which

allows for a locally varying smoothness of the resulting estimate. The effectiveness of this

approach as a scatterplot smoother is demonstrated when compared to the traditional

smoothing spline and other more spatially adaptive methods. LACOSSO machinery can

be effectively transferred into higher dimensional problems and non-continuous responses
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Figure 5: log10 (average computing times) versus sample size for the Mexican hat example

.

(Bernoulli data, Poisson data, etc.). Its performance is not adversely affected when al-

lowing for more flexibility (more bins) unlike other methods that have a tendency to

overfit. In fact the performance of LACOSSO seems to improve with the addition of

bins, which is a contrast to the method of Pintore et al. (2006), for example, with 10

and 20 bins. This behavior can be attributed to the formulation of the minimization in

the COSSO like framework, which involves only one tuning parameter, instead of one

tuning parameter per bin. The MSE asymptotic optimality of this method has also been

established.

References

Berlinet, A. & Thomas-Agnan, C. (2004), Reproducing Kernel Hilbert Spaces in Proba-

bility and Statistics, Norwell, MA: Kluwer Academic Publishers.

23



Cox, D. (1983), ‘Asymptotics for m-type smoothing splines’, Annals of Statistics

11(2), 530–551.

Eubank, R. (1999), Nonparametric Regression and Spline Smoothing, CRC Press.

Friedman, J. (1991), ‘Multivariate adaptive regression splines (with discussion)’, Annals
of Statistics 19, 1–141.

Friedman, J. & Silverman, B. (1989), ‘Flexible parsimonious smoothing and additive
modeling (with discussion)’, Technometrics 31, 3–39.

Gu, C. (2002), Smoothing Spline ANOVA Models, Springer-Verlag, New York, NY.

Hansen, M. & Kooperberg, C. (2002), ‘Spline adaptation in extended linear models (with
discussion)’, Statistical Science 17, 2–51.

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman & Hall/CRC.

Helton, J., Martell, M. & Tierney, M. (2000), ‘Characterization of subjective uncertainty
in the 1996 performance assessment for the Waste Isolation Pilot Plant’, Reliability
Engineering and System Safety 69(1-3), 191–204.

Lin, Y. & Zhang, H. (2006), ‘Component selection and smoothing in smoothing spline
analysis of variance models’, Annals of Statistics 34(5), 2272–2297.

Luo, Z. & Wahba, G. (1997), ‘Hybrid adaptive splines’, Journal of the American Statis-

tical Association 92(437), 107–116.

Nosedal-Sanchez, A., Storlie, C., Lee, T. & Christensen, R. (2011), ‘Reproducing ker-
nel hilbert spaces for penalized regression: A tutorial’, American Statistician (in
review).

Parzen, E. (1961), ‘An approach to time series analysis’, Annals of Statistics 32, 951–989.

Parzen, E. (1962), Stochastic Processes, 1st edition edn, Holden-Day.

Pintore, A., Speckman, P. & Holmes, C. (2006), ‘Spatially adaptive smoothing splines’,
Biometrika 93(1), 113–125.

Reich, B., Storlie, C. & Bondell, H. (2009), ‘Variable selection in bayesian smoothing
spline anova models: Application to deterministic computer codes’, Technometrics

51(2), 110–120.

Schimek, M., ed. (2000), Smoothing and Regression: Approaches, Computation, and

Application, John Wiley & Sons, Inc., New York, NY.

Speckman, P. (1985), ‘Spline smoothing and optimal rates of convergence in nonpara-
metric regression-models’, Annals of Statistics 13(3), 970–983.

24



Stone, C., Hansen, M., Kooperberg, C. & Truong, Y. (1997), ‘1994 wald memorial lectures
- polynomial splines and their tensor products in extended linear modeling’, Annals
of Statistics 25(4), 1371–1425.

Storlie, C., Bondell, H. & Reich, B. (2010), ‘A locally adaptive penalty for estimation of
functions with varying roughness’, Journal of Computational and Graphical Statis-

tics 19(3), 569–589.

Storlie, C., Bondell, H., Reich, B. & Zhang, H. (2011), ‘Surface estimation, variable
selection, and the nonparametric oracle property’, Statistica Sinica 21(2), 679–705.

Storlie, C. & Helton, J. (2008), ‘Multiple predictor smoothing methods for sensitiv-
ity analysis: Description of techniques’, Reliability Engineering and System Safety

93(1), 28–54.

Storlie, C., Swiler, L., Helton, J. & Sallaberry, C. (2009), ‘Implementation and evaluation
of nonparametric regression procedures for sensitivity analysis of computationally
demanding models’, Reliability Engineering and System Safety 94, 1735–1763.

van de Geer, S. (2000), Empirical Processes in M-Estimation, Cambridge University
Press.

Vaughn, P., Bean, J., Helton, J., Lord, M., MacKinnon, R. & Schreiber, J. (2000), ‘Repre-
sentation of two-phase flow in the vicinity of the repository in the 1996 performance
assessment for the Waste Isolation Pilot Plant’, Reliability Engineering and System

Safety 69(1-3), 205–226.

Wahba, G. (1990), Spline Models for Observational Data, CBMS-NSF Regional Confer-
ence Series in Applied Mathematics.

Wahba, G., Wang, Y., Gu, C., Klein, R. & Klein, B. (1995), ‘Smoothing spline anova for
exponential families, with application to the WESDR’, Annals of Statistics 23, 1865–
1895.

Zou, H. (2006), ‘The adaptive lasso and its oracle properties’, Journal of the American

Statistical Association 101(476), 1418–1429.

25



A Supplementary Material

A.1 Calculations to find the r.k.

Here we give the specific calculations of the covariance functions K1 and K2 for Sec-

tion 4.2. We then demonstrate that K1 and K2 are the r.k.’s for S
∗

1 and S∗

2 , respectively.

Case 1. 0 ≤ s ≤ t ≤ τ1

First, we need to recall that the mean value and covariance of a Wiener Process are

given by

m(t) = E[X(t)] = 0 (A1)

Cov[X(s), X(t)] = min(s, t) (A2)

Now, note that the expectation of Z1(t) is equal to zero.

E

[
∫ t

0

X(ν)dν

]

=

∫ t

0

E[X(ν)]dν = 0 (A3)

This implies that the covariance between Z1(s) and Z1(t) is given by

Cov[Z1(s)Z1(t)] = E [Z1(s)Z1(t)]

= E

[∫ s

0

X(y)dy

∫ t

0

X(u)du

]

= E

[∫ s

0

∫ t

0

X(y)X(u)dydu

]

=

∫ s

0

∫ t

0

E [X(y)X(u)]dydu

=

∫ s

0

∫ t

0

min(y, u)dydu

=

∫ s

0

(
∫ u

0

ydy +

∫ t

u

udy

)

du

= s2
(

t

2
−

s

6

)

=
s2t

2
−

s3

6

or in general for 0 < s < τ1, 0 < t < τ1,

E [Z1(s)Z1(t)] =
min2(s, t)max(s, t)

2
−

min3(s, t)

6
(A4)

1



Case 2. If t and s are in [τ1, 1] and s < t.

First, note that E(Z1(t)) = 0.

To determine the covariance between Z1(s) and Z1(t) we need to find its product

Z1(s)Z1(t) = [Z1(τ1) + (s− τ1)X(τ1)][Z1(τ1) + (t− τ1)X(τ1)]

= Z2
1(τ1) + Z1(τ1)X(τ1)(t− τ1) + Z1(τ1)X(τ1)(s− τ1) + (s− τ1)(t− τ1)X

2(τ1)

= Z2
1(τ1) + Z1(τ1)X(τ1)[(t− τ1) + (s− τ1)] + (s− τ1)(t− τ1)X

2(τ1)

Now,

E[Z1(s)Z1(t)] = E[Z2
1(τ1)]+ [(t− τ1)+(s− τ1)]E[Z1(τ1)X(τ1)]+ (s− τ1)(t− τ1)E[X2(τ1)]

(A5)

We know, from case 1, that

E[Z2
1(τ1)] =

τ 31
2

−
τ 31
6

=
τ 31
3

(A6)

E[X(τ1)Z1(τ1)] = E

[
∫ τ1

0

X(y)X(τ1)dy

]

(A7)

=

∫ τ1

0

min(y, τ1)dy =
τ 21
2

(A8)

E[X2(τ1)] = min(τ1, τ1) = τ1 (A9)

Then, substituting (A6), (A8) and (A9) into (A5) gives

E[Z1(s)Z1(t)] =
τ 31
3

+ [(t− τ1) + (s− τ1)]

[

τ 21
2

]

+ (s− τ1)(t− τ1)τ1 (A10)

Case 3. 0 ≤ s ≤ τ1 ≤ t ≤ 1.

From the two cases discussed above, we have that E(Z1(t)) = 0. To find the covariance

2



of Z1(t), first we need the product Z1(s)Z1(t)

Z1(s)Z1(t) =

[
∫ s

0

X(ν)dν

] [
∫ τ1

0

X(ν)dν + (t− τ1)X(τ1)

]

=

[
∫ s

0

X(ν)dν

] [
∫ s

0

X(ν)dν +

∫ τ1

s

X(ν)dν + (t− τ1)X(τ1)

]

=

[
∫ s

0

X(ν)dν

]2

+

[
∫ s

0

X(ν)dν

] [
∫ τ1

s

X(ν)dν

]

+ (t− τ1)X(τ1)

[
∫ s

0

X(ν)dν

]

= [Z1(s)]
2 + [Z1(s)] [Z1(τ1)− Z1(s)] + (t− τ1)X(τ1) [Z1(s)]

Now,

E[Z1(s)Z1(t)] = E [Z1(s)]
2 + E [Z1(s)] [Z1(τ1)− Z1(s)] + (t− τ1)E [X(τ1)Z1(s)] (A11)

From calculations in cases 1 and 2, we know that

E[Z2
1 (s)] = V ar[Z1(s)] =

s3

3
(A12)

E[X(τ1)Z1(s)] =
s2

2
(A13)

We also need to find the following expectation

E [Z1(s)] [Z1(τ1)− Z1(s)] = Cov [Z1(s)Z1(τ1)]− V ar [Z1(s)] (A14)

=

[

s2τ1
2

−
s3

6
−

s3

3

]

=

[

s2τ1 − s3

2

]

(A15)

Finally, substituting (A12),(A13) and (A15) into (A11) we have that

E[Z1(s)Z1(t)] =
s3

3
+

[

τ1s
2 − s3

2

]

+
(t− τ1)s

2

2
=

ts2

2
−

s3

6
(A16)

or for general case 0 ≤ s ≤ τ1 ≤ t ≤ 1 or 0 ≤ t ≤ τ1 ≤ s ≤ 1

E[Z1(s)Z1(t)] =
max(s, t)min2(s, t)

2
−

min3(s, t)

6
(A17)

3



A.2 Proving that R1 = K1 is the r.k. of S∗
1 .

We now prove that R∗

1 = K1 has the ”reproducing property” and hence is the r.k. of the

space S∗

1 . We split this into two cases: (1) t ∈ [0, τ1] and (2) t ∈ [τ1, 1].

Case 1. Assume that t ∈ [0, τ1], by definition the inner product between f(·) and K(·, t)

is given by

〈f(t), K(·, t)〉 =

∫ 1

0

∂2

∂s2
K(s, t)f ′′(s)ds

=

∫ t

0

∂2

∂s2
K(s, t)f ′′(s)ds+

∫ τ1

t

∂2

∂s2
K(s, t)f ′′(s)ds+

∫ 1

τ1

∂2

∂s2
K(s, t)f ′′(s)ds

Note that the second term and the third term on the right hand side of the last

equation are equal to zero. One can see this by using our definition of K(s, t), case 1 in

(A4) and case 3 in (A17) respectively, and finding the second partial derivative of K(s, t)

for each case with respect to s when s > t.

Doing this we have that

〈f(t), K(s, t)〉 =

∫ t

0

∂2

∂s2
K(s, t)f ′′(s)ds =

∫ t

0

(t− s)f ′′(s)ds. (A18)

Integrating by parts this last expression

〈f(t), K(s, t)〉 = (t− t)f ′(t)− (t− 0)f ′(0) + f(t)− f(0). (A19)

Finally, recall that f ′(0) = f(0) = 0 which implies that

〈f(t), K(s, t)〉 = f(t). (A20)

Case 2. Assume that t ∈ [τ1, 1], by definition the inner product between f(·) and K(·, t)

is given by

〈f(t), K(s, t)〉 =

∫ 1

0

∂2

∂s2
K(s, t)f ′′(s)ds

=

∫ τ1

0

∂2

∂s2
K(s, t)f ′′(s)ds+

∫ t

τ1

∂2

∂s2
K(s, t)f ′′(s)ds+

∫ 1

t

∂2

∂s2
K(s, t)f ′′(s)ds
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Note that the second term and third terms on the right hand side of the equation

shown above are equal to zero, by our definition of K(s, t), so that

〈f(t), K(s, t)〉 =

∫ τ1

0

∂2

∂s2
K(s, t)f ′′(s)ds =

∫ τ1

0

(t− s)f ′′(s)ds (A21)

=

∫ τ1

0

(t− s)f ′′(s)ds = (t− τ1)f
′(τ1)− tf ′(0) + f(τ1)− f(0) (A22)

Recalling that f ′(0) = f(0) = 0 we have that

〈f(t), K(s, t)〉 = f(τ1) + (t− τ1)f
′(τ1) = f(t) (A23)

Applying the same arguments to the shifted and rescaled versions of s and t, one can

prove that R∗

2 = K2 is the r.k. for S∗

2 as well.

A.3 Proof of the Convergence Theorem.

Before presenting a proof for the result regarding optimal MSE convergence, we state a

definition and a lemma necessary for the proof.

Definition. (Entropy for the supremum norm) For a function space G, let N∞(δ, G) be

the smallest value of N such that there exists {gj}
N
j=1 with

sup
g∈G

min
j=1,..,N

|g − gj |∞ ≤ δ.

Then H∞(δ, G) = logN∞(δ, G) is called the δ-entropy of G for the supremum norm.

Where |g|∞ = supx∈X |g(x)|.

Lemma 1. Consider a regression model yi = g0(xi) + ǫi, i = 1, ..., n where g0 is known

to lie in a class G of functions, xi are given covariates in [0, 1]p, and ǫi are independent

N(0, σ2) errors. Let I : G → [0,∞) be a pseudo-norm on G. Define

ĝ = arg min
g∈G

1

n

n
∑

i=1

{yi − g(xi)}
2 + λ2

nI(g)

5



Assume

H∞

(

δ, {
g − g0

I(g) + I(g0)
: g ∈ G, I(g) + I(g0) > 0}

)

≤ Aδ−α (A24)

for all δ > 0, n ≥ 1 and some A > 0, 0 < α < 2. Here H∞ stands for the entropy

for the supreme norm. Then i) if I(g0) > 0 and λ−1
n = Op(n

1

2+α )I
2−α
4+2α (g0), we have

‖ĝ − g0‖n = Op(λn)I
1/2(g0); ii) if I(g0) = 0 we have ‖ĝ − g0‖n = Op(n

−1

2−α )λ
−2α
2−α
n

Before actually proving the theorem we give a brief sketch of the proof to provide

more clarity. First, note that if we prove that G, the class of functions we are interested

in, is bounded in entropy then we can use Lemma 1 and we are done. It turns out that

with the supremum norm we have problems with the linear part of our functions. That

is, Lemma 1 cannot be used directly since (A24) is not satisfied in our case. To see this

define the following set of functions

F = {f(x) = α + βx, x ∈ [0, 1], α, β ∈ ℜ} (A25)

Note that given any δ > 0 and any finite set of functions gj’s we can find a function f ∈ F

such that |f − gj|∞ > δ. Therefore, we decompose our functional space into two parts:

linear part and non-linear part. Then we deal with each of these components separately.

After we give a rate of convergence for the linear part, we deal with the non-linear part.

We will show that the entropy of the functional space of the nonlinear part has the form

A∗δ1/2, for some A∗ and the desired result follows from Lemma 1.

Proof of the Theorem. Lemma 1 cannot be used directly since (A24) is not satisfied

in our case. Therefore, to apply lemma 1 we have to decompose the space of functions

in two parts: linear part and non-linear part. This problem can be dealt with with the

following arguments. For any f ∈ S2, we can write

f(x) = b0 + b1x+ f1(x) + ... + fp(x) = g1(x) + g2(x)

where g1(x) = b0 + b1x, g2(x) = f1(x) + ... + fp(x), fj ∈ S∗

j ,
∑n

i=1 fj(xi) = 0 and

6



∑n
i=1 xifj(xi) = 0 for j = 1, 2, ..., p.

Similarly, for the unknown underlying function f0, write

f0(x) = b00 + b01x+ f01(x) + ...+ f0p(x) = g01(x) + g02(x)

where g01(x) = b00 + b01x, g02(x) = f01(x) + ... + f0p(x), f0j ∈ S∗

j ,
∑n

i=1 f0j(xi) =

0 and
∑n

i=1 xif0j(xi) = 0 for j = 1, 2, ..., p. Then, by construction
∑n

i=1{g01(xi) −

g1(xi)}{g02(xi)− g2(xi)} = 0.

Then we can write 1
n

∑n
i=1[yi − f(xi)]

2 + λnJ(f) , where

J(f) =
∑p

j=1

{

∫ τj
τj−1

[f ′′(x)]2dx
}1/2

, as

1

n

n
∑

i=1

{(g01(xi)− g1(xi)) + (g02(xi)− g2(xi) + ǫi)}
2 + λnJ(g)

1
n

∑n
i=1{(g01(xi)− g1(xi))}

2 + 2
n

∑n
i=1(g01(xi)− g1(xi))(g02(xi)− g2(xi) + ǫi)

+
∑n

i=1(g02(xi)− g2(xi) + ǫi)
2 + λnJ(g).

Due to the conditions imposed above (we have those conditions to guarantee that g1

and g2 are orthogonal under the empirical inner product), we have

1

n

n
∑

i=1

{(g01(xi)− g1(xi))}
2 +

2

n

n
∑

i=1

(g01(xi)− g1(xi))ǫi +
n
∑

i=1

(g02(xi)− g2(xi) + ǫi)
2

+ λnJ(g2)

Therefore the corresponding g1 to the f which minimizes (8) must minimize

1

n

n
∑

i=1

{(g01(xi)− g1(xi))}
2 +

2

n

n
∑

i=1

(g01(xi)− g1(xi))ǫi.

By example 9.3.1 of van de Geer (2000), page 152, we have that ĝ1 converges with rate

n−1/2.

On the other hand, the non-linear part, ĝ2 must minimize

1

n

n
∑

i=1

[g02(xi)− g2(xi)]
2 + λnJ(g2)
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Let G = {g ∈ S2 : g(x) = f1(x) + ... + fp(x) with fj ∈ S∗

j ,
∑n

i=1 fj(xi) = 0, and
∑n

i=1 xifj(xi) = 0, j = 1, 2, ..., p}.

We can now apply lemma 1 with I = J and α = 1/2. All that remains to be shown is

that (A24) is satisfied. The conclusion of the Theorem then follows from the conclusion

of lemma 1.

Let J∗(g) =
∫ 1

0
[f ′′(x)]2dx. From page 168 of van de Geer (2000), note that

H∞(δ, {g ∈ G : J∗(g) ≤ 1}) ≤ Aδ−1/2.

Also,

J∗(g) =

∫ 1

0

[f ′′(x)]2dx ≤





p
∑

j=1

{

∫ τj

τj−1

[f ′′(x)]2dx

}1/2




2

= J2(g)

Thus J(g) ≤ 1 implies that J∗(g) ≤ 1 so that {g ∈ G : J(g) ≤ 1} ⊂ {g ∈ G : J∗(g) ≤ 1}.

Now if {g ∈ G : J∗(g) ≤ 1} can be covered by N balls of radius δ, then {g ∈ G : J(g) ≤ 1}

can be covered by the same balls since it is a smaller set. Hence,

H∞(δ, {g ∈ G : J(g) ≤ 1}) ≤ Aδ−1/2.

Lastly, noting that J(g−g0) ≤ J(g)+J(g0) for any g ∈ G, we see that (A24) is satisfied.

The conclusion of the Theorem then follows from the conclusion of lemma 1.
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